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Explicit or implicit filtered representations of chaotic fields like spectral cut-offs or 
numerical discretizations are commonly used in the study of turbulence and 
particularly in the so-called large-eddy simulations. Peculiar to these representations 
is that they are produced by different filtering operators at different levels of 
resolution, and they can be hierarchically organized in terms of a characteristic 
parameter like a grid length or a spectral truncation mode. Unfortunately, in the case 
of a general implicit or explicit filtering operator the Reynolds rules of the mean are 
no longer valid, and the classical analysis of the turbulence in terms of mean values 
and fluctuations is not so simple. 

In  this paper a new operatorial approach to the study of turbulence based on the 
general algebraic properties of the filtered representations of a turbulence field at 
different levels is presented. The main results of this analysis are the averaging 
invariance of the filtered NavierStokes equations in terms of the generalized central 
moments, and an algebraic identity that relates the turbulent stresses at different 
levels. The statistical approach uses the idea of a decomposition in mean values and 
fluctuations, and the original turbulent field is seen as the sum of different 
contributions. On the other hand this operatorial approach is based on the 
comparison of different representations of the turbulent field at different levels, and, 
in the opinion of the author, it is particularly fitted to study the similarity between 
the turbulence at different filtering levels. The best field of application of this 
approach is the numerical large-eddy simulation of turbulent flows where the large 
scale of the turbulent field is captured and the residual small scale is modelled. It is 
natural to define and to extract from the resolved field the resolved turbulence and 
to use the information that it contains to adapt the subgrid model to the real 
turbulent field. Following these ideas the application of this approach to the large- 
eddy simulation of the turbulent flow has been produced (German0 et al. 1991). It 
consists in a dynamic subgrid-scale eddy viscosity model that samples the resolved 
scale and uses this information to adjust locally the Smagorinsky constant to the 
local turbulence. 

1. Introduction 

generally expressed by a convolutional integral (Leonard 1974) given by 
A filtered representation of an original chaotic field wi can be formally and quite 

( u ~ ( x , ~ ) ) ~ , ~  = ~ui(x’ , t ’ )Y(x-x’ , t - - l ’ ;Z,8)d3x’dt’ ,  (1 1 

with Y(x-x’, t-t’;I,8)d3x’dt’ = 1, I 
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where 1 and 8 are a characteristic filter length and a characteristic filter time. Typical 
implicit filters are the numerical discretizations, and characteristic explicit filters are 
the following : 

+I9 

(u,(x,  t ) > O  = f 1 U i ( X ,  t ’ )  dt’, (3) 

(4) 

while typical filters commonly used in the large-eddy simulation of turbulent flows 
are the spectral cutoffs and the Gaussian filters given by the convolutional nucleus 

(u, (x ,  t ) ) l  = ; r+z p” u,(x’, t )  dz’ dy’ dz‘, 
X Y  

Formally, the filtering approach stands between the direct approach and the 
statistical approach and probably will produce in the future a unified theory linking 
the direct approach to the statistical one by a continuous interval of intermediate 
steps. We notice that physical space-time averages are often substitutive of the 
ensemble average, particularly when symmetries or homogeneities are present in the 
flow. As a particular example let us consider the class of time filters (3) parameterized 
in terms of the characteristic filter time 8; we see that they constitute a hierarchy of 
filters going from the identity, 0 = 0, the direct approach, to the infinite time 
average, 8+ 00, and it is well known that for statistically steady flows this time 
average converges to the ensemble average. 

From an operatorial point of view the filtering approach consists in applying 
explicitly or implicitly to the Navier-Stokes equations a linear operator commutative 
with the space and time derivatives. Its principal field of application is in 
computational fluid dynamics, and the characteristic filter lengths and times are 
intimately related to the grid discretization or to the spectral truncation. However, 
the history of the filtering approach is very old, and dates from the first studies on 
turbulence. The first average proposed by Boussinesq (1877) is given by (3), where 
0 is ‘un temps assez petit ’, while Reynolds (1895) preferred the spatial average (a), 
where P is a certain volume of space. It is evident that only in the case 8+co or 
1+ co do these averaging operators satisfy the simple conditions that Reynolds 
himself stated as necessary for a well-behaved mean operator : 

((f >> = (f >, (7) 

and so attention was subsequently directed to the statistical averages that clearly 
satisfy the Reynolds rules of the mean (6), (7). In the shadow of the statistical 
approach the filtering approach received little attention : papers are very scarce and 
good reviews of what was done up to the advent of the computer can be found in 
Kampk de Fkriet (1957) and Monin & Yaglom (1971). 

This attitude radically changed with the advent of the computer. The analogies 
between the filtering operators and the numerical discretization were appreciated 
(Rogallo BE Moin 1984) ; it was shown that their characteristic lengths and times can 
be correlated with computational grid values and the filtering approach became the 
framework that permitted a formal theory of the large-eddy simulations in all its 
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aspects. Obviously the difficulties regarding averages that do not satisfy the 
Reynolds rules of the mean remained. The old idea of averaging the NavierStokes 
equations was almost always coupled to the parallel idea of a decomposition of the 
turbulent signal into a mean part (u,), that is to say the part generated by the 
average, and a fluctuation u;, whose sum is the original quantity, u, = ( u ~ )  +u;. The 
usual procedure of the statistical approach is to write equations for the fluctuating 
velocities u; and to produce evolutionary equations for the central moments defined 
in terms of the fluctuations as 

(u; u;), (u; u; u;), . . . , (8) 

giving rise to the well-known problem of closure. This procedure, when extended to 
non-Reynolds averaging operators (German0 1987), produces a lot of problems 
mainly because the mean value of the fluctuations is now different from zero and the 
assumption that there is no correlation between the mean values and the fluctuations 
is no longer valid: 

As a consequence the classical relations between the moments (u, u,), (u, ujuk), . . . 
and the central moments (Monin & Yaglom 1971, p. 223) 

(u;> * 0, <<ui>u;> * 0. (9) 

( 4  u;> = (ut u,) - ( U O  (U,>? 1 (10) 
(u; u; u;> = (ul u j  uk,> - (%> <u; u;> - <uj> <u; u;) - <uk) (u; u;> 

-<%> < u j )  ( u k ) ,  

(u; u; u; u;) = . . . 
are no longer valid, and new terms arise that considerably complicate the system of 
averaged equations and their closure. However, if we introduce a new set of 
generalized central moments 

simplicity is regained, as we will see. A trace of this idea can be found in the papers 
of Lilly (1966) and Deardorff (1970). In this last paper, when the Reynolds rules of 
the mean are assumed valid in the case of the box filter (4), he states : 'However, this 
assumption is not separately necessary and may be incorporated into later 
assumptions if (u; u;) is formally replaced by (u, u,) - ( u ~ )  (u,) wherever it 
appears.' In  the next section we will apply this formal replacement in a rigorous way, 
and the evolutionary equations for the generalized central moments will be deduced 
for a general linear filtering operator. We anticipate that the result will be very 
simple and surprising at  the same time : the evolutionary equations of the generalized 
central moments are exactly the Reynolds equations, and the algebraic structure of 
the closure is the same for every linear commuting filter. We call this the averaging 
invariance of the turbulent equations. 
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2. The averaging invariance of the turbulent equations in terms of the 
generalized central moments 

Let us consider a generic linear and constant-preserving averaging operator 

( f + g >  = < f > + < g ) ,  

( a f )  = a( f )  if a = constant 
(13) 

(14) 

having only the commuting properties with space and time derivatives 

< f , t >  = ( f > , t ;  < f , k )  = < f ) , k .  (15) 

If we now consider the NavierStokes equations for incompressible fluids 

and the equations derived by taking a moment of (17) with u, and adding this to  
another moment of the same equation but with the indices interchanged, 

(Ui u,), t + (ua U j U k ) ,  k = - bu i  a,, +PQ,k - 4% Uj) ,  k1.k + 2P%j--w, kU,, k, (18) 

where gt j  = 2vstj ; sij = t ( U &  j + uj, i), (19) 

it is, first, very easy to  see that in terms of the moments (u,ui),(uiu,uk), ... the 
filtered equations are the same for every filter. What is, however, more interesting is 
the fact that this averaging invariance can be extended directly and without recourse 
to the fluctuations to the generalized central moments that are the usual quantities 
modelled in the closure problem. By some simple algebra we can recover the 
following equations : 

(Uk),k = 0, (20) 

( U i ) , t + ( ( % ) ( % ) ) J C  = -(p>,i+(a,,),,-[7(ui,uk)l,k, (21) 

[7(% 911,  t + [7(% U j )  <Uk)l ,  k = -{7(% uj9 Uk) 

+ 7@,  uo a,, + 7 ( P ,  U j )  4, - V [ 7 ( % >  q 1 ,  k), k: 
+ 27(P7 Sij) - 2V7(%, k, uj, k) 

-7(ui, u k )  (uj), k - 7 ( ~ j ,  uk) ( ~ i > ,  /c, 

[7(% U,, %)I, t + [7(% U p  Uk) <%)I. z = * .  . 9 

(22) 

(23) 

where the generalized central moments 7(  f, g),  ~ ( f ,  g, h),  . . . are defined as in (12) : 

7(f, 9) = <fg ) - (f)  (g), 

7(f, 91 h)  = U g h )  - <f) 7(9, h) - (9) 7(h,f)  - ( h )  7(f, 9 )  - (f)  ( 9 )  (h>l (24) 

7 ( f , g , h , k )  = . a ' ,  

and we notice that the contracted form of (22) gives a generalized equation for the 
turbulent energy : 

E T , t +  ( E T < U k ) ) , k  = -[$7(ut,ui, ukc)+7@,uk)-VET,k],]C-V7(ui,k, % , k ) - 7 ( u i , u k : ) ( s $ k ) ,  

(25) 

ET = 3(.,, u t ) .  (26) 

where E ,  is the generalized turbulent energy given by 

It is easy to see that the structure of the averaged equations in terms of the 
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generalized central moments does not depend on the particular filter and is formally 
equal to the structure of the well-known statistical equations (Davydov 1961). 
Apart from the particular form that the generalized turbulent stresses assume in the 
case of a statistical averaging operator subjected to the Reynolds rules of the mean, 
we notice that the structure of the filtered equations is invariant to the particular 
averaging operation. We will refer to this property of the filtered equations as their 
averaging invariance, and we notice again that this invariance is in terms of the 
generalized central moments previously defined in (24). They generalize the usual 
statistical central moments expressed in terms of the fluctuations and given by the 
relations 

7(f, 9)  = <f’g’>, 7(f, 9,  h) = ( f ’g ’h ’ ) .  (27) 

3. An algebraic property of the generalized central moments. The resolved 
turbulence 

The averaging invariance of the turbulent equations is, in the opinion of the 
author, largely unexplored and in a sense more suffered than tested and appreciated. 
We will not discuss now the implications that the averaging invariance has on the 
closure problem, and only note that in some way or another it suggests a large 
indifference of the equations to the implicit or explicit filter actually applied in a 
single-level filtered representation. 

If the one-level filtered equations are independent of what real filter is applied, we 
can explore multi-level filtering procedures in order to generate improved subgrid 
models. Usually the multi-level procedures are based on spectral splitting operators, 
and we refer to the papers of Tchen (1973) and Schiestel (1987) on the matter. We 
notice that multi-level procedures have usually been produced in terms of a multiple 
decomposition of the velocity field u, in ranks or in components UP) that when 
summed reproduce the original field 

u, = CUl“’.  
a 

In this paper we prefer to compare what happens at different levels, and there will 
be no recourse to any kind of decomposition. In a sense this approach arises naturally 
when we do numerical computations: we test what happens if we change our grid 
intervals, and compare the results at different levels of resolution. The tool that will 
help us in this approach is an algebraic relation that we now will deduce and 
illustrate. 

As we have seen, the main problem of a large-eddy simulation is to model the 
generalized turbulent stress 7f(ui, u,) related to the two velocity components ut, u, 
and defined 

7f(Ut,U,) = (U*U,)f-(Ut)f  (U,>f, (29) 

where F is now the particular implicit or explicit filter applied and ( u , ) ~  the F-level 
filtered values. Let us now introduce another filter, the explicit test filter G, and let 
us denote by (uJ fg ,  

(30) 

the FG = GF filtered values. If we denote by 7fg(ui, u,) the turbulent stress at the FG- 
level, 

( 4 f g  = <(U*)f>, = ((U,>,>f, 

7f9(U*, u,) = (U,U,)fg- (U,)fe9 (31) 
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and by T ~ (  ( u ~ ) ~ ,  (u,)~) the resolved turbulent stress extracted from the resolved scale 
F, 

the following algebraic relation holds : 

7g((ui)f, (uj)f) = ((Ui), (Ujl)f)g- (ui)fg (uj>fg, 

7,g(ui, uj) = (7,(~i,uj))g +Tg((ui)f, (uji),). 

(32) 

(33) 

The physical meaning of this algebraic relation is simple : the turbulent stress at the 
FG-level is equal to the G-averaged value of the turbulent stress a t  the F-level plus 
the resolved turbulent stress 7g((ui),, (u,)~) extracted from the resolved scale F .  
Similarly we can extract from the resolved scale the resolved turbulent energy, or the 
resolved production, or the resolved dissipation, or anything that we would like to 
test. We notice that the algebraic relation (33) applies locally in space and time, so 
that the resolved turbulence is composed of fluctuating terms. In  the applications we 
will see the utility of this algebraic relation in an ensemble form. If we denote an 
ensemble average with an overline, as usual, we can also write 

(34) 7fg(%u,) = (7f(% u,))g+7g((%)f’ <+f). 

It is also interesting to apply (33) to the case in which the test filter G is the ensemble 
average E .  We obtain 

7fe(ui ,  uj) = 7,(ui,uji) +7e(<ui)f, (uj)f), (35) 

We notice that 7,(ui, u,) represents the usual Reynolds stress, 

7,(Ui,Uj) = utujr-aiaj, (37) 

so that (36) can be interpreted as follows: the Reynolds stress is equal to the 
ensemble value of the turbulent stress at the F-level plus the resolved turbulent 
stress 7,((u ) , (u,),). We notice that the resolved turbulent stresses can be explicitly 
calculated in a large-eddy simulation and in the following the possible use of this 
algebraic property in multi-level subgrid modelling is discussed. 

f . f  

4. A dynamic procedure for the determination of the Smagorinsky 
constant 

Explicit spectral cutoff filters and Gaussian filters (Leonard 1974), volume 
averages (Schumann 1975), and statistical filters (Yoshizawa 1989) have been 
proposed and used in the past and belong to the category of filters considered in this 
paper. Also, numerical discretization can be interpreted as an implicit filter having 
generally unknown properties (Rogallo BE Moin 1984), and explicit prefiltering has 
been suggested in order to remove the indeterminacy of the numerical discretization. 
Apart from the exact determination of the real filtering operator represented by the 
particular large-eddy-simulation technique adopted, we think that the problem of 
the closure and the related subgrid models for the turbulent stresses can be largely 
discussed in the framework of the operatorial approach previously described. 

A basic ingredient that characterizes the subgrid models used in the large-eddy- 
simulation is that their characteristic lengthscale is usually given by the grid size. As 
a consequence simple algebraic models or at most one-equation models for the 
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turbulent energy have been adopted. Among them the simplest one is the 
Smagorinsky (1963) model whose basic ingredients are the following. We assume that 
the anisotropic, deviatoric part of the turbulent stress e ( u i ,  u,), 

G(ut, uj) = 7 f ( ~ S ,  u,) -&37f(u,, uz), (38) 

(%Jf = w * > p . , +  <U,)f,,) (39) 

is related to the averaged strain-rate tensor 

by the constitutive relation 
7 3 %  u,) = - 2 V f  <Si,>f, 

where vf is the eddy viscosity related to the generic explicit filtering operator F that 
produces the filtered values (u,)f .  From the dimensional analysis, this eddy viscosity 
can be given in terms of the characteristic length of the filter 1, and the dissipation 
E by the relation 

and we finally assume that the turbulent dissipation e is in equilibrium with the 
turbulent production P. From the transport equation of the generalized turbulent 
energy (25), the production term P is given by 

V f  = c g s ,  (41) 

P = -Tf(u.!, urn) <Slrn) f  = -T,"(u,, urn) <Slrn)f, (42) 

where cs is the Smagorinsky constant. Note that the basic ingredients of this single- 
level model are averaging invariant. It is plausible to suppose that the structure of 
the Smagorinsky model is largely independent of the particular average used, having 
only its commutivity with the derivatives, and that the particular average explicitly 
appears in the scale of the model, that is to say the values of cs and I f .  Obviously in 
this way the consistency between the filter and the model is assured, mainly by the 
fact that the strain rate tensor that appears in it is consistently averaged by the same 
operator. This point also applies when no explicit filtering operators are used if we 
assume that a particular numerical scheme is equivalent to a linear truncating or 
filtering operator commuting with the derivatives. 

From the beginning (Lilly 1966; Deardorff 1970), the eddy viscosity model has 
been intensively used in large-eddy simulations of turbulent flows owing to its 
balanced mixture of physical content and mathematical simplicity. Its extension 
from homogeneous and isotropic turbulence to homogeneous turbulence in sheared 
and rotating flows has, however, created some problems, and more will probably 
arise in its application to transitional flows and compressible turbulence. Evidence 
exists (Rogallo & Moin 1984) that the Smagorinsky constant decreases in the 
presence of mean shear, where the large-scale mean velocity gradient is probably 
overestimated, and it must be supplemented at the wall by empirical wall functions. 
Generally speaking we can say that this model cannot recognize if the flow is laminar 
at  the actual computational level, and these are its limits in a pure single-level 
representation. 

In order to extend the range of application of the Smagorinsky model we can 
improve the consistency of the model with the results that are obtained and adjust 
the model to them in an interactive way. There is obviously in a large-eddy 
simulation an enormous amount of information that could be selectively used in 
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order to adapt the model to the real particular flow considered. For simplicity we 
assume that F ,  G and the product GF = FG are space-filtering or truncating 
operators characterized in the physical space by their shape and by their 
characteristic lengths l f ,  I, and I f , .  One of the problems of subgrid modelling consists 
in this case in determining the appropriate values of the constant cs that appears in 
the Smagorinsky model. We recall that an attractive property of the explicit 
Gaussian filters is that the commutative product FG = GF of two Gaussian filters F ,  
G with characteristic lengths I f  and 1, is another Gaussian filter with a characteristic 
length I f ,  given by 

and the same happens in the case of the product of two cutoff spectral filters 
characterized in physical space by their characteristic lengths I f  and 1,. In this latter 
case their product is another spectral cutoff filter with a characteristic length Z f g  
given by 

l f ,  = ( l ;+ l ; ) t ,  (44) 

< ( u i > f > g  = ( < U i ) g ) f  = ( u i > f ;  1 f g  = 1, if l f  > (45) 

< ( u i > f > g  = <(ui>g>f = ( u i > g  ; l f g  = 1, if I f  < 1,. (46) 

In order to apply the previous ideas concerning a possible multi-level dynamic 
procedure to the Smagorinsky model, let us substitute into the algebraic identity (33) 
the values given by the Smagorinsky model. We can write 

and we finally obtain the relation 

- 2 v f g  < S i j > f g  = - 2 ( v f < S i , > f > g + ~ ( ( U i ) f ,  < u j ) f ) ’  

7 3  < u i > f ,  ( u j ) f )  = 7g( ( u i ) f ,  ( u j ) f )  - f s i j  7g( (ul > f ,  < u l > f ) ,  

(51) 

where G(<ui)f ,  (u,),) is the anisotropic, deviatoric part of the resolved turbulent 
stress 

(52) 

which can be used in order to determine the local Smagorinsky constant. We notice 
that the ‘constant’ so calculated depends on the position, the time and the indices 
i,j, so that it is not a constant a t  all. As regards the dependence on the indices i , j  a 
scalar procedure should probably only pretend that the production-dissipation P, at 
the FG level, 

P f g  = - - 7 f g ( %  %) ( S l r n ) f g  = -7;g(ul> urn) ( S l r n ) f g ,  (53) 

- 2 V f g  ( S l r n ) f ,  ( S l r n ) f g  = - 2 + f  < S l r n ) f ) ,  ( S l r n ) f ,  + 7 3 ( U J f ,  < U r n > f )  (%rn>f,’  (54) 

is consistent with the sample. In this case we can write the contracted relation 

and a local isotropic value of the Smagorinsky constant can be obtained. This 
particular model was proposed by the author (Germano 1990) a t  the CTR 1990 
Summer Meeting, and the interaction theory computation (Germano et al. 1991) has 
greatly improved this suggested procedure as follows. It was clear from the first 
numerical results that this dynamic Smagorinsky constant should be obtained in an 
ensemble form. Such a form can be easily obtained by a time average for a 
statistically steady flow or a space average if some symmetry plane for the 
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turbulence exists. If we indicate that ensemble average by an overline we can write 
the expression (54) in the form 

-2vfg (Slrn)fg (Strn)fg = -2(vf (8lm)f)g ( S l r n ) f g  + c ( ( u l ) f ,  (urn)f) (Slrn)fg* (55) 

The Smagorinsky constant cs most consistent with the model can be easily derived 
from this equation as 

and we can finally write explicitly 

where sf and sfg are given by 

Note that the model given by (57) depends only on the ratio of the filter lengths l f g / l f ,  
and it goes to zero with the resolved turbulent stress C ( ( u J f ,  ( u 5 ) f ) ,  so that it is able 
to recognize when the flow is laminar. The optimal size of the test filter G should be 
chosen carefully. If its length Z g  is small with respect to the filtering length Zf we have 
to expect some form of ill-conditioning ; on the other hand, if this length is large the 
test is probably biased by the increasing predominance of the large resolved scales. 
This dynamic subgrid-scale eddy viscosity model was implemented by applying 
explicit spectral cutoff filters and it was tested a priori by using the direct numerical 
summation database of Kim, Moin & Moser (1987) for turbulent channel flow and 
that of Zang, Gilbert & Kleiser (1990) for transitional flow. In order to determine its 
accuracy it was also tested a posteriori in the large-eddy simulation of transitional 
and fully developed turbulent channel flow. The results are in satisfactory agreement 
with the direct simulation data. 

5. Consistent decomposition of the generalized central moments 
We have seen that the structure of the averaged equations in terms of the 

generalized central moments does not depend on the particular filter and that they 
are homomorphic to the statistically averaged Reynolds equations. We have also 
noted that the generalized central moments of the second order, 7(ui, u,), reduce in 
the case of a statistical operator to the so-called turbulent or Reynolds stresses and 
we have discussed the relations between different turbulent stresses at different 
resolution levels. Let us now discuss other interesting algebraic properties of these 
quantities. First, it is very easy to see that the generalized central moments ~ ( f , g ) ,  
~ ( f ,  9 ,  h), . . . are symmetric in their arguments, with some of the following algebraic 
properties : 

7( f, a) = 0 if a = constant, (60) 

~ ( f , g , a )  = 0 if a = constant, (61 1 
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If we now decompose f, g ,  h as f = f l  + f 2 ,  g = g 1  + g 2 ,  h = h, + h,, the related homo- 
geneous and consistent (in the sense defined below (69)) decomposition of the 
generalized central moments is 

~ ( f 1  +fi, 91 + g 2 )  = 7 ( f i , g 1 )  + 7 ( f 1 ,  9-21 + d f z ,  91) +7(fz1 gz), (64) 
7(f i+fz ,g1+gz ,h l+hz)  = 7(f1,g1,h1)+7(f1,g1,h2)+7(f1,g2,hl) 

+ 7 ( f 2 , g i , h i ) + 7 ( f 2 , g l ,  h2)+7(fZ,gZ,hi)+7(fi,gz,hz)+7(f,,gz,h,), (65) 

and as a consequence we recover the Galilean invariance of the quantities 7(  f, g ) ,  
7 ( . j , g , h ) ,  .... We have 

where a,P, y are constants, and in particular if we now decompose each quantity f, 
g ,  h into a mean value (f ), ( g ) ,  ( h )  and a fluctuation f ’, g’, h‘, 

f =  (f)+f‘;  g = ( g ) + g ’ ;  h = (h)+h‘, (67 1 

(68) 

we can consistently decompose the quantities 7(f, g )  and 7(f, g ,  h)  as follows : 

7((f)+f/, ( 9 ) + 9 0  = 7((f)> ( 9 ) ) + 7 ( ( f ) , g ’ ) + 7 ( f ’ ,  ( 9 ) ) + 7 ( f ’ , g ’ ) ,  

7((f)+f’? ( 9 ) + 9 / ,  (h)+h’) = 7((f ) * ( g ) ,  (h))+7((f) ,  ( g ) , h ’ ) + 7 ( ( f ) , g ’ ,  ( h ) )  

+7(f’ ,  ( g ) ,  ( h ) ) + 7 ( ( f ) , g ’ , h ’ ) + 7 ( f ’ ,  ( g ) , h ’ ) f T ( f ’ , g ’ ,  ( h ) ) + 7 ( f ’ , g ’ , t ) .  (69) 

Note that this decomposition of the generalized turbulent stresses is consistent with 
their definition. All terms have the same properties, and particularly they are 
Galilean invariant term by term. We call this decomposition consistent decomposition, 
and we refer to the terms 7(( f ), ( 9 ) )  as resolved turbulent stresses, to the terms 
7(  f ’, 9’) as subgrid stresses, while the remaining terms are the cross-stresses, since in a 
large-eddy simulation the mean values are related to the values resolved a t  grid level. 
Until now we have not used the concept of a decomposition of the turbulent 
quantities into two parts, mean and fluctuating and we have preferred to show the 
algebraic properties that relate and compare the turbulent stresses at different levels 
of resolution. As a consequence it is useful here to recall that if we decompose the 
turbulent quantities as 

the classical decomposition is given by (Leonard 1974) 

U( = (ui)f+u;;  u, = ( U J f + u ; ,  (70) 

where 

is the resolved or Leonard term, 

ci, = ( 4  <Uj>f>f  + <u; ( U J f > f  (73) 

the cross-term, and Rij = <u;u;>f (74) 

the Reynolds term. We notice that following the arguments developed in this paper 
these terms are not turbulent stresses and, as we have seen, a decomposition 
consistent with the averaging invariance of the turbulent equation is given by 

7f(ui,ui)  = pij+q,+qj, (75) 

where now y i j  = 7f((ui>f> (uj)f) (76) 
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is a resolved turbulent stress, and 

We remark again that an important difference between the two decomposition is that 
the first is composed of terms that are not singularly Galilean invariant (Speziale 
1985), while in the second one the terms obviously have the same properties as 
discussed in the previous sections so that they preserve one by one the Galilean 
invariance of the decomposed original stress (German0 1986). 

6. Conclusions 
In this paper some algebraic properties of filtering operators have been analysed. 

It is shown that the averaged equations are the same in terms of the generalized 
central moments, and the resolved turbulence is defined. Algebraic consistency rules 
that relate these resolved quantities to the turbulent stresses at different levels are 
derived, and their possible use in subgrid modelling is examined. The idea of a 
comparison between different levels complementary to  the usual idea of a 
decomposition in ranks is introduced and discussed. 

In the opinion of the author the algebraic relation (33) should be interpreted as a 
general condition that, in some way or another, a multi-level filtering procedure must 
satisfy and from the same perspective different multi-level filtering techniques could 
be suggested for different subgrid models. We finally remark that another attractive 
application of the multi-level filtering approach concerns its possible use as an 
experimental tool of investigation. Given a hierarchy of filters organized in terms of 
a space or time parameter, it could be interesting to analyse and compare the 
resolved turbulence at different filtering levels. If for example we consider the set of 
time-box filters given by 

+e 
(UJX, t ) ) e  = f udx,  t ’ )  dt’ (78) 

and organized in terms of the characteristic time 8 ,  we could conceive a multi-level 
filtering analysis of the turbulence in terms of the generalized central moments and 
their properties. In analogy with the wavelet analysis that gives us a local spectral 
picture of the flow, this boxlet approach should provide, at  least for statistically 
steady fields, a local statistical analysis of the turbulence. 
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